

Institute of Medical Molecular Genetics

Dynamic mutations & anticipation Imprinting mutations & diseases

Prof. Dr. Wolfgang Berger

April 29th 2024

Universität Zürich ^{wa} Institut für Medizinis	sche Molekulargenetik		
Forschung - Research Gendiagnostik - Genetic Testin			Home Kontakt English Q Suc
	g Lehre - Teaching - Training Pu	blikationen - Publications	Direktion - Management Team - People Mehr \equiv
	Lehre - Teaching - Training $\; o \;$		
	Symposium Eye Meets Genes		
FORSCHUNG	Frühjahrssemester 2024	>	LEHRE & FORTBILDUNG
→ Research Overview	Herbstsemester 2023	n >	→ Symposium Eye Meets Genes
→ Genome Editing & Organoids	Frühighrssemester 2023	、 、	→ Frühjahrssemester 2024
→ Nevt Generation Sequencing	Harbetserrester 2022	í.	→ Iournal Club
, next deneration bequencing	Herbstsemester 2022	>	, sournareau
	Frühjahrssemester 2022	>	
	Herbstsemester 2021	>	
PUBLIKATIONEN	Frühjahrssemester 2021	>	KONTAKT
→ Recent Publications	Herbstsemester 2020	>	→ Sekretariat
→ 2022	Frühjahrssemester 2020	>	→ Feedback
→ 2021	Herbstsemester 2019	>	→ Lageplan
→ Awards & Awardees	Frühighrssemester 2019		
	Herbstsemester 2018	>	

ich ^{am}	https://www.medmolgen.uzh.ch Institute of				
Universität Zürich ^{uust} Institut für Medizinische Molekular	enetik	Home Kontakt Q Suche			
Forschung - Research Gendiagnostik - Genetic Testing Lehre - Tea	hing - Training Publikationen - Publications Direktion - Manageme	ant Team-People Mehr ☰			
Home / Lehre - Teaching - Training / Frühjahrssemester 2024 / BIO 388					
BIO 388 H	uman Genetics				
We present and discuss a understanding the concer	election of issues relevant for ts of modern medical genetics. A broad spectrum				
of topics will be covered r	nging from the use of genetics in forensics				
to clinical studies of hereo course is to elucidate the	itary disorders. A key objective of this ole of interactions between genes and				
environment in health an	disease.				
Handouts 29.04.2024					
Handouts 06.05.2024					
	BIO 388 April 29th 2024 Prof. Wolfgang Berger				

Literature & resources

BIO 388 | April 29th 2024 | Prof. Wolfgang Berge

University of Zurich[™] Institute of Medical Molecular Genetics NIH National Library of Medicine National Center for Biotechnology Information Bookshelf Search Books ٢ Browse Titles Advanced Help Disclaime **GeneReviews**[®] < Prev Next > Editors: Margaret P Adam, Editor-in-Chief, Jerry Feldman, Medical Editor, Ghayda M Mirzaa, Medical Editor, Roberta A Pagon, Medical Editor, Stephanie E Wallace, Medical Editor, Lora JH Bean, Molecular Genetics Editor, Karen W Gripp, Molecular Genetics Editor, and Anne Amemiya, Genetic Counseling Editor. Views GENEReviews PubReader Print View Seattle (WA): University of Washington, Seattle; 1993-2024. ISSN: 2372-0697 Annier Editors Charata N Hira Haberta A Page Cite this Page Disable Glossary Links Copyright and Permissions Search GeneReviews GeneReviews Advanced Search Help Bulk Download -Bulk download GeneReviews data from FTP GeneReviews, an international point-of-care resource for busy clinicians, provides clinically relevant and medically actionable information for inherited conditions in a standardized journal-style format, covering diagnosis, . management, and genetic counseling for patients and their families. Each chapter in GeneReviews is written by one or GeneReviews Links more experts on the specific condition or disease and goes through a rigorous editing and peer review process before GeneReviews Advanced Search being published online. GeneReviews Glossary GeneReviews currently comprises 893 chapters and has over seven million users annually. Resource Materials NEW FEATURE The two general formats for GeneReviews are: chapters focused on a single gene or phenotype (~95%) and overviews New in GeneReviews summarizing causes of common genetic conditions (e.g., genetic hearing loss, Alzheimer disease) (~5%). Author List To ensure continuing relevant and medically actionable content, each GeneReviews chapter is updated every four to For Current/Prospective Authors five years (or as needed) by the author(s) in a formal and comprehensive process curated by the GeneReviews editors, GeneReviews Personnel Additional revisions may occur more frequently as needed to reflect significant changes in clinically relevant Download/Link to GeneReviews information Contact Us Genetic counseling and testing terms used in GeneReviews are hyperlinked to definitions in the GeneReviews Glossary. Resource Materials include additional information on key genetics concepts used in GeneReviews. GeneReviews are indexed in PubMed. Related information BIO 388 | April 29th 2024 | Prof. Wolfgang Berge

OMIM[®] - Online Mendelian Inheritance in Man[®]

Welcome to OMIM[®], Online Mendelian Inheritance in Man[®]. OMIM is a comprehensive, authoritative compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text, referenced overviews in OMIM contain information on all known mendelian disorders and over 15,000 genes. OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries contain copious links to other genetics resources.

This database was initiated in the early 1960s by Dr. Victor A. McKusick as a catalog of mendelian traits and disorders, entitled Mendelian Inheritance in Man (MIM). Twelve book editions of MIM were published between 1966 and 1998. The online version, OMIM, was created in 1985 by a collaboration between the National Library of Medicine and the William H. Welch Medical Library at Johns Hopkins. It was made generally available on the internet starting in 1987. In 1995, OMIM was developed for the World Wide Web by NCBI, the National Center for Biotechnology Information.

OMIM is authored and edited at the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, under the direction of Dr. Ada Hamosh.

BIO 388 | April 29th 2024 | Prof. Wolfgang Berger

University of Zurich[™]

Institute of Medical Molecular Genetics

Online Mendelian Inheritance in Man (OMIM®)

Number of Entries in OMIM (Updated February 6th, 2024) :

MIM Number Prefix	Autosomal	X Linked	Y Linked	Mitochondrial	Totals
Gene description *	16,350	769	51	37	17,207
Gene and phenotype, combined +	21	0	0	0	21
Phenotype description, molecular basis known #	6,364	386	5	34	6,789
Phenotype description or locus, molecular basis unknown $\%$	1,390	110	4	0	1,504
Other, mainly phenotypes with suspected mendelian basis	1,639	100	3	0	1,742
Totals	25,764	1,365	63	71	27,263

Disease	Mode of inheritance	Gene	Location of repeat	Repeat sequence	Unaffected	Intermediate or grey zone	Affected
Very large expansion	ons outside	coding se	quences			mutable normal reduced penetr.	
Fragile X	XL	FMR1	5' UTR	CGG	5-44	45-54 55-200	>200
Friedreich ataxia	AR	FXN	intron 1	GAA	5-33	34-65	66 or more tha 1500
Myotonic dystrophy	AD	DMPK	3' UTR	CTG	5-34	35-49	>49
Spinocerebellar ataxia 8 (SCA8)	AD	ATXN8OS, ATXN8	3' UTR,	CTG, CAG	15-50	50-70?	>70
Moderate expansion	ons within o	oding sequ	uences				
Huntington disease	AD	HTT	exon 1	CAG	<26	27-35 36-39	>39
Kennedy disease (SBMA)	XR	AR	exon 1	CAG	<35	36-37	>37
SCA1	AD	ATXN1	exon 8	CAG	6-44	36-38 39-44	>39
SCA2	AD	ATXN2	exon 1	CAG	<32		>31
SCA6	AD	CACNA1A	exon 47	CAG	<19	19	20-33
SCA7	AD	ATXN7	exon 3	CAG	<20	28-33 34-36	>36 (up to 460)
Machado-Joseph disease	AD	ATXN3	exon 10	CAG	<44	45-51	52-86
DRPLA	AD	ATN1	exon 5	CAG	6-35	20-35	>47
		W. Be	rger, March 2012 (s	ource: Gene Reviews	@ NCBI)		

Ponost avnancion disassas

Institute of Medical Molecular Genetics

Fragile X Syndrome

CGG expansion in FMR1

Variant Type	# of CGG	Methylation Status of	Clinical	Status	
variant type	Trinucleotide Repeats	FMR1	Male	Female	
Premutation	~55-200	Unmethylated	At risk for FXTAS ¹	 At risk for FXPOI & FXTAS Potential ↑ risk of other fragile X-assoc disorders ¹ 	
Full mutation	>200	Completely methylated	100% have ID.	~50% w/ID, ~50% normal intellect	
Repeat size mosaicism	Varies between premutation & full mutation in different cell lines	Partial: unmethylated in premutation cell line; methylated in full-mutation cell line	Nearly 100% have ID; may be higher functioning ² than		
Methylation mosaicism	>200	Partial: mixture of methylated & unmethylated cell lines	males w/full mutation.	Highly variable: ranges from normal intellect to	
Unmethylated full mutation	>200	Unmethylated	 ID, if present, is typically high functioning. May have anxiety &/or behavioral issues even w/out ID 	affected	

Institute of Medical Molecular Genetics

Risk of expansion in maternal transmission

Table 5. Risks for Expansion from a Maternal Premutation to a Full <u>Mutation</u> When Transmitted to Offspring

Number of Maternal Premutation CGG Repeats	Total Maternal Transmissions	Expansions to Full <u>Mutations</u> (%) ¹
55-59	27	1 (3.7%)
60-69	113	6 (5.3%)
70-79	90	28 (31.1%)
80-89	140	81 (57.8%)
90-99	111	89 (80.1%)
100-109	70	70 (100%)
110-119	54	53 (98.1%)
120-129	36	35 (97.2%)
130-139	18	17 (94.4%)
140-200	19	19 (100%)

Adapted from Nolin et al (2003)

Source: Gene Clinics @ NCBI

University of Zurich™

S NCBI Resources 🕑 How To 🕑	Sign in to NCE
Bookshelf Browse Titles Advanced	Search
GeneReviews [®] [Internet].	🖬 🎐 🎇
Envirement Show details	
tatina Silizia GeneReviews by Title ♥	Views der
Search GeneReviews	Print View
GeneReviews Advanced Search Help	Cite this Dece
CMD4 Disardara	One ons rage
FMR1 Disorders	PDF version of this page (655K)
Jessica Ezzell Hunter, PhD, Elizabeth Berry-Kravis, MD, PhD, Heather Hipp, MD, and Peter K Todd, MD, PhD.	Disable Glossary Links
* Author Information	
Initial Posing: June 10, 1996, Last Opdate: November 21, 2019.	In this GeneReview
Estimated robuling units, so minates	Gene Review Scope
Summary Go to: 🕑	Diseptain
Clinical characteristics. FMR1 disorders include fragile X syndrome (FXS), fragile X-associated tremor/ataxia	
syndrome (FXTAS), and fragile X-associated primary ovarian insufficiency (FXPOI).	Canational Characteristics
• Fragile X syndrome occurs in individuals with an FMR1 full mutation or other loss-of-function variant and is	Genetically Related (Allelic) Disorders
nearly always characterized in affected males by developmental delay and intellectual disability along with a	
variety of behavioral issues. Autism spectrum disorder is present in 50%-70% of individuals with FXS.	Management
medical problems including hypotonia, gastroesophageal reflux, strabismus, seizures, sleep disorders, joint	Genetic Counseiing
laxity, pes planus, scoliosis, and recurrent otitis media. Adults may have mitral valve prolapse or aortic root	Resources
dilatation. The physical and behavioral features seen in males with FXS have been reported in females	Molecular Genetics
heterozygous for the FMR1 full mutation, but with lower frequency and milder involvement.	References
• FXTAS occurs in individuals who have an FMR1 premutation and is characterized by late-onset, progressive	Chapter Notes
cerebellar ataxia and intention tremor followed by cognitive impairment. Psychiatric disorders are common.	
the premutation (40%) than among females who are <u>heterozygous</u> for the premutation (16%-20%).	Bulk Download Bulk download GeneReviews data from FTP
 FXPOI, defined as hypergonadotropic hypogonadism before age 40 years, has been observed in 20% of women 	
who carry a premutation allele compared to 1% in the general population.	GeneReviews Links
BIO 388 Anril 20th 2024 Prof. Wolfnang Berner	

Other *FMR1*-related diseases

Table 2. Risk of FXTAS by Age in Males with an FMR1 Premutation

Age in Years	Risk
50-59	17%
60-69	38%
70-79	47%
≥80	75%

Table 4. Odds Ratios for POF by Premutation Size

Premutation Size in CGG Repeats Odds Ratio for POF

59-79	6.9
80-99	25.1
>100	16.4

BIO 388 | April 29th 2024 | Prof. Wolfgang Berger

Sherman 2005

Source: Gene Reviews at NCBI

triplet expansion in 3'-UTR of DMPK

ch ²²⁴	Disease	Mode of Inheritance	Gene	Location of repeat	Repeat sequence	Unaffected	Intermediate or grey zone	Affected	ledical Molecula
	Very large exp	ansions out	side coding se	quences			mutable normal reduced penetr.		
	Fragile X	XL	FMR1	5' UTR	CGG	5-44	45-54 55-200	>200	
	Friedreich ataxia	AR	FXN	intron 1	GAA	5-33	34-65	66 or more than 1500	
	Myotonic dystrophy	AD	DMPK	3' UTR	CTG	5-34	35-49	>49	
	Spinocerebellar ataxia 8 (SCA8)	AD	ATXN8OS, ATXN8	3' UTR,	CTG, CAG	15-50	50-70?	>70	
	Moderate expa	ansions with	in coding seq	uences					
	Huntington disease	AD	HTT	exon 1	CAG	<26	27-35 36-39	>39	
	Kennedy disease (SBMA)	XR	AR	exon 1	CAG	<35	36-37	>37	
	SCA1	AD	ATXN1	exon 8	CAG	6-44	36-38 39-44	>39	
	SCA2	AD	ATXN2	exon 1	CAG	<32		>31	
	SCA6	AD	CACNA1A	exon 47	CAG	<19	19	20-33	
	SCA7	AD	ATXN7	exon 3	CAG	<20	28-33 34-36	>36 (up to 460)	
	Machado-Joseph disease	AD	ATXN3	exon 10	CAG	<44	45-51	52-86	
	DRPLA	AD	ATN1	exon 5	CAG	6-35	20-35	>47	
			W. Berger,	March 2012 (so	urce: Gene Reviews	@ NCBI)	·	·	

Correlation between repeat number and symptoms Table 2. Correlation of Phenotype and CTG Repeat Length in Myotonic Dystrophy Type 1 CTG Repeat Size ^{1,2} Age of Onset Average Age of Death Phenotype **Clinical Signs** Mutable normal (premutation) None 35 to 49 NA ³ NA^3 Cataracts Mild 50 to ~150 20 to 70 yrs 60 yrs to normal life span Mild myotonia Weakness Myotonia Cataracts Classic ~100 to ~1000 10 to 30 yrs 48 to 55 yrs Balding Cardiac arrhythmia Others Infantile hypotonia Respiratory deficits Birth to 10 yrs 45 yrs 5 >2000 4 Congenital Intellectual disability Classic signs present in adults From de Die-Smulders et al [1998], Mathieu et al [1999], International Myotonic Dystrophy Consortium [2000] Source: Gene Clinics @ NCBI BIO 388 | April 29th 2024 | Prof. Wolfgang Berge

Zunch	
	Myotonic Dystrophy Type 2
	Proximal Myotonic Myopathy (PROMM)
	Repeat expansion:
	 CNBP (zinc finger protein 9, ZNF9) is the only gene known to be associated with myotonic dystrophy type 2
	- CNBP intron 1 contains a complex repeat motif: (TG)n(TCTG)n(CCTG)n
	- expansion of the CCTG repeat causes DM2
	 the number of CCTG repeats in expanded alleles ranges from approximately 75 to more than 11,000 with a mean of approximately 5000 repeats
	- the detection rate of a <i>CNBP</i> CCTG expansion is more than 99% with the combination of routine PCR and Southern blot analysis
	BIO 388 April 29th 2024 Prof. Wolfgang Berger
University of Zurich ^{um}	Institute of Medical Molecular Genetics
	Chorea Huntington (Veitstanz)
	<u>Frequency:</u> ~ 1 : 30'000

Clinic:

- disease manifestation in the 35th 45th year of life
- movement disorders
- change in behaviour and personality (psychiatric abnormalities)

- ► cognitive impairment
- reduced life span

 (40% of all choreatics die in the first 10 years of illness, a further 30% after a maximum of 15 years of illness)

University of Zurich[™] Institute of Medical Molecular Genetics **Chorea Huntington (Veitstanz) Genetic testing:** always as integrated part of a genetic counselling session issue of pre-symptomatic/prenatal molecular genetic testing guidelines for carrying out molecular genetic diagnostics must be followed Gene Clinics @ NCBI: normal: up to 26 CAGs 27-35 CAGs (risk for children) intermediate: disease causing: 36 or more CAGs 36-39 CAGs: reduced penetrance 40 or more CAGs: full penetrance BIO 388 | April 29th 2024 | Prof. Wolfgang Berge

Chorea Huntington (Veitstanz) Exons: 67; Transcript length: 13,475 bps; Translation length: 3,142 residues Genomic size: 170 kbp _ 8 × 🛞 Alamut: HD - Huntingtin (Huntington dise 🐨 🔍 (Goldenson...) 🖙 🥽 🔝 🗽 🔕 🗈 🈻 🗶 📧 et voc 8 >4 🎇 Huntingtin (Huntington o Overview of Transcript NM_002111.6 0.1069 0.1322 0.1744 0.249 me - chr4:3,046,346-3,046,582 (NCBI 36) - 236 bp CCATGGCGACCCTGGAAAAGCTGATGAAGGCCTTCGAG 3GTACCGCTGGGACCTTTTCGACTACTTCCGGAAGCTCA NM_002111.6: Huntingtin (Huntington disease) (HD), mRN/ CATGOCGACCCTGGAAAAGCTGATGAAGGCCTTCGAGTC M K A P E S L K S P Q Q Q Q Q Q P P P Q A M K A P E S L K S P R R T R A R R P P P Q A M K A P E S L K S P R R T R A R R P P P R A P R M K A F E S L R S F Q Q Q Q Q P P A A I P E E P T Q M K A F E S L K S F Q Q Q Q Q P A A I P E E P T Q M K A F E S L K S F Q Q Q Q Q P P A A I P E E P T Q

Institute of Medical Molecular Genetics

University of Zurich[™] Institute of Medical Molecular Genetics Friedreich Ataxia (FRDA) Frequency: ~1:25'000 - 50'000 **Clinical manifestations and symptoms:** slowly progressive ataxia with onset usually before age 25 years (mean age at onset: 10-15 yrs) typically associated with dysarthria, muscle weakness, spasticity (particularly in the lower limbs), scoliosis, bladder dysfunction, absent lower-limb reflexes, loss of position and vibration sense approximately two thirds of individuals with FRDA have cardiomyopathy up to 30% have diabetes mellitus change in behaviour, dementia BIO 388 | April 29th 2024 | Prof. Wolfgang Berge University of Zurich[™] Institute of Medical Molecular Genetics Friedreich Ataxia (FRDA) **Genetics**: autosomal recessive mode of inheritance FRDA gene (frataxin, FXN), chromosome 9q13 triplet expansion (GAA) in the first intron of the FRDA

- gene
- * normal range: 5-33 GAAs
- * premutation: 34-65
- pathological: from 66 to >1700 GAAs
- expansion in both alleles in more than 95% of patients, in 4% only in one allele, point mutations rare

Disease	Mode of inheritance	Gene	Location of repeat	Repeat sequence	Unaffected	Intermediate or grey zone	Affected
Very large expansion	ons outside	coding se	quences			mutable normal reduced penetr.	
Fragile X	XL	FMR1	5' UTR	CGG	5-44	45-54 55-200	>200
Friedreich ataxia	AR	FXN	intron 1	GAA	5-33	34-65	66 or more that 1500
Myotonic dystrophy	AD	DMPK	3' UTR	CTG	5-34	35-49	>49
Spinocerebellar ataxia 8 (SCA8)	AD	ATXN8OS, ATXN8	3' UTR,	CTG, CAG	15-50	50-70?	>70
Moderate expansion	ons within o	oding sequ	uences				
Huntington disease	AD	HTT	exon 1	CAG	<26	27-35 36-39	>39
Kennedy disease (SBMA)	XR	AR	exon 1	CAG	<35	36-37	>37
SCA1	AD	ATXN1	exon 8	CAG	6-44	36-38 39-44	>39
SCA2	AD	ATXN2	exon 1	CAG	<32		>31
SCA6	AD	CACNA1A	exon 47	CAG	<19	19	20-33
SCA7	AD	ATXN7	exon 3	CAG	<20	28-33 34-36	>36 (up to 460)
Machado-Joseph disease	AD	ATXN3	exon 10	CAG	<44	45-51	52-86
DRPLA	AD	ATN1	exon 5	CAG	6-35	20-35	>47

University of Zurich

Institute of Medical Molecular Genetics

Recurrence Risk in PWS (Counselling)

Genetic Mechanism	Risk to Sibs of a <u>Proband</u> with PWS
Deletion PWS/AS region	<1% 1
Uniparental disomy (UPD)	<1% ²
Imprinting defect with mutation	≤50% ³
Imprint defect without mutation	<1% 3
Apparently <i>de novo</i> balanced <u>chromosome</u> <u>translocation</u> breaking within the PWS/AS <u>critical region</u> ^{4, 5}	<1% 5

Source: Gene Reviews @ NCBI

Recurrence Risk in AS (Counselling)

Molecular Class ¹	Families	Genetic Mechanism	Risk to Sibs	
Ia	65%-75%	5-7 Mb deletion	<1%	
Ib	<1%	Unbalanced <u>chromosome</u> translocation or inherited small interstitial <u>deletion</u>	Possibly as high as 50%	
IIa	3%-7%	Paternal UPD	<1%	
IIb	<1%	Paternal UPD with predisposing parental translocation	Approaching 100% if father has a 15;15 Robertsonian translocation	
IIIa	0.5%	ID with <u>deletion</u> in the IC	As high as 50% if mother also has IC deletion	
IIIb	2.5%	ID without deletion in the IC	<1%	
IV	11%	UBE3A mutation	As high as 50% if mother also has a mutation	
v	10%-15%	"Other" - no identifiable molecular abnormality	Undetermined risk	
L. Based on terminology by Jiang et al [1999]				

Source: Gene Reviews @ NCBI

